207 research outputs found

    Making Heat Visible: Promoting Energy Conservation Behaviors Through Thermal Imaging

    Get PDF
    Householders play a role in energy conservation through the decisions they make about purchases and installations such as insulation, and through their habitual behavior. The present U.K. study investigated the effect of thermal imaging technology on energy conservation, by measuring the behavioral effect after householders viewed images of heat escaping from or cold air entering their homes. In Study 1 (n = 43), householders who received a thermal image reduced their energy use at a 1-year follow-up, whereas householders who received a carbon footprint audit and a non-intervention control demonstrated no change. In Study 2 (n = 87), householders were nearly 5 times more likely to install draught proofing measures after seeing a thermal image. The effect was especially pronounced for actions that addressed an issue visible in the images. Findings indicate that using thermal imaging to make heat loss visible can promote energy conservation

    Natural Wormholes as Gravitational Lenses

    Get PDF
    Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.Comment: 4 pages; plus 4 figures; ReV_TeX 3.0; DOE/ER/40537-001/NPL94-07-01

    SnoopCGH: software for visualizing comparative genomic hybridization data

    Get PDF
    Summary: Array-based comparative genomic hybridization (CGH) technology is used to discover and validate genomic structural variation, including copy number variants, insertions, deletions and other structural variants (SVs). The visualization and summarization of the array CGH data outputs, potentially across many samples, is an important process in the identification and analysis of SVs. We have developed a software tool for SV analysis using data from array CGH technologies, which is also amenable to short-read sequence data

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Characterization of Within-Host Plasmodium falciparum Diversity Using Next-Generation Sequence Data

    Get PDF
    Our understanding of the composition of multi-clonal malarial infections and the epidemiological factors which shape their diversity remain poorly understood. Traditionally within-host diversity has been defined in terms of the multiplicity of infection (MOI) derived by PCR-based genotyping. Massively parallel, single molecule sequencing technologies now enable individual read counts to be derived on genome-wide datasets facilitating the development of new statistical approaches to describe within-host diversity. In this class of measures the FWS metric characterizes within-host diversity and its relationship to population level diversity. Utilizing P. falciparum field isolates from patients in West Africa we here explore the relationship between the traditional MOI and FWS approaches. FWS statistics were derived from read count data at 86,158 SNPs in 64 samples sequenced on the Illumina GA platform. MOI estimates were derived by PCR at the msp-1 and -2 loci. Significant correlations were observed between the two measures, particularly with the msp-1 locus (P = 5.92×10−5). The FWS metric should be more robust than the PCR-based approach owing to reduced sensitivity to potential locus-specific artifacts. Furthermore the FWS metric captures information on a range of parameters which influence out-crossing risk including the number of clones (MOI), their relative proportions and genetic divergence. This approach should provide novel insights into the factors which correlate with, and shape within-host diversity

    TLR9 polymorphisms in African populations: no association with severe malaria, but evidence of cis-variants acting on gene expression

    Get PDF
    BACKGROUND: During malaria infection the Toll-like receptor 9 (TLR9) is activated through induction with plasmodium DNA or another malaria motif not yet identified. Although TLR9 activation by malaria parasites is well reported, the implication to the susceptibility to severe malaria is not clear. The aim of this study was to assess the contribution of genetic variation at TLR9 to severe malaria. METHODS: This study explores the contribution of TLR9 genetic variants to severe malaria using two approaches. First, an association study of four common single nucleotide polymorphisms was performed on both family- and population-based studies from Malawian and Gambian populations (n>6000 individual). Subsequently, it was assessed whether TLR9 expression is affected by cis-acting variants and if these variants could be mapped. For this work, an allele specific expression (ASE) assay on a panel of HapMap cell lines was carried out. RESULTS: No convincing association was found with polymorphisms in TLR9 for malaria severity, in either Gambian or Malawian populations, using both case-control and family based study designs. Using an allele specific expression assay it was observed that TLR9 expression is affected by cis-acting variants, these results were replicated in a second experiment using biological replicates. CONCLUSION: By using the largest cohorts analysed to date, as well as a standardized phenotype definition and study design, no association of TLR9 genetic variants with severe malaria was found. This analysis considered all common variants in the region, but it is remains possible that there are rare variants with association signals. This report also shows that TLR9 expression is potentially modulated through cis-regulatory variants, which may lead to differential inflammatory responses to infection between individuals

    Lack of Association of Interferon Regulatory Factor 1 with Severe Malaria in Affected Child-Parental Trio Studies across Three African Populations

    Get PDF
    Interferon Regulatory Factor 1 (IRF-1) is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs) across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi). No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia) was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria

    Social cohesion through football: a quasi-experimental mixed methods design to evaluate a complex health promotion program

    Get PDF
    Social isolation and disengagement fragments local communities. Evidence indicates that refugee families are highly vulnerable to social isolation in their countries of resettlement. Research to identify approaches to best address this is needed. Football United is a program that aims to foster social inclusion and cohesion in areas with high refugee settlement in New South Wales, Australia, through skills and leadership development, mentoring, and the creation of links with local community and corporate leaders and organisations. The Social Cohesion through Football study’s broad goal is to examine the implementation of a complex health promotion program, and to analyse the processes involved in program implementation. The study will consider program impact on individual health and wellbeing, social inclusion and cohesion, as well as analyse how the program by necessity interacts and adapts to context during implementation, a concept we refer to as plasticity. The proposed study will be the first prospective cohort impact study to our knowledge to assess the impact of a comprehensive integrated program using football as a vehicle for fostering social inclusion and cohesion in communities with high refugee settlement

    Population Genetic Analysis of Plasmodium falciparum Parasites Using a Customized Illumina GoldenGate Genotyping Assay

    Get PDF
    The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum
    corecore